Effect of Four Liquid Organic Wastes on The Growth of Four Trichoderma harzianum Isolates and Their Effect on Cucumber Growth and Yield
DOI:
https://doi.org/10.37638/sinta.2.2.19-30Abstract
The aim of this research was to determine the effect of fourliquid organic substrates on the growth of four Trichoderma harzianum isolates and their effect on cucumber growth and yield. Randomized block design was used with 20 treatments and 3 replicates. The treatments consisted of control, tofu liquid waste, rice washing water, coconut water, and tapioca waste substrates each combined with four T. harzianum isolates. Variables observed were conidia density during decomposition, conidia late density, crop height, root length, root fresh and dry weight, crop fresh and dry weight, the first flowering, number of fruits per plant, and fruit weight. Result of the research showed that in the tapioca waste substrate, only T16 isolates was able to grow well with a maximum density of 6,70x107 conidia/mL. In the rice washing water substrate, conidia growth of the isolate was better than coconut water substrate with a maximum density of 6,25x107 conidia/mL. The best liquid organic substrate for growing media of T. harzianum was tofu liquid waste. On the 4th day with the tofu waste substrate, T16 isolate could achieve conidia density of 1,12x108 conidia/mL. The liquid organic substrate resulted from T. harzianum decomposition was not different on cucumber yield.
References
Alfiky, A. and L. Weisskopf. 2021. Deciphering Trichoderma–plant–pathogen interactions for better development of biocontrol applications. J Fungi (Basel) 7(1): 61. DOI: 10.3390/jof7010061.
Arain, R.R., R.N. Syed, A.Q. Rajput, M.A. Khanzada, N.A. Rajput, and A.M. Lodhi. 2015. Comparative efficacy of Trichoderma harzianum, neem extract and furadan on Meloidogyne incognita infecting tomato plant growth. Pakistan Journal of Nematology 33(1): 105-112.
Boat, M.A.B., B. Iacomı, M.L. Sameza, and F.F. Boyom. 2018. Fungicide tolerance and effect of environmental conditions on growth of Trichoderma spp. with antagonistic activity against Sclerotinia sclerotiorum causing white mold of common bean (Phaseolus vulgaris). International Journal of Innovative Approaches in Agricultural Research 2(3): 226-243. DOI: 10.29329/ijiaar.2018.151.8.
Bunbury-Blanchette, A.L. and A.K. Walker. 2019. Trichoderma species show biocontrol potential in dual culture and greenhouse bioassays against Fusarium basal rot of onion. Biological Control 130: 127-135. DOI: 10.1016/j.biocontrol.2018.11.007.
Chalimah, N., L. Soesanto, and W.S. Suharti. 2020. The effect of various pH medium on the secondary metabollites production from Trichoderma harzianum T10 to control damping off on cucumber seedlings. Journal of Tropical Horticulture 3(2): 65-70. DOI: 10.33089/jthort.v3i2.52.
Chen, J.-L., S.-Z. Sun, C.-P. Miao, K. Wu, Y.-W. Chen, L.-H. Xu, H.-L. Guan, and L.-X. Zhao. 2016. Endophytic _Trichoderma gamsii_ YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of _Panax notoginseng_. Journal of Ginseng Research 40(4):315–324. DOI: 10.1016/j.jgr.2015.09.006.
Es-Soufi, R., B. El Bouzdoudi, M. Bouras, M. L’Bachir El Kbiach, A. Badoc, and A. Lamarti. 2017. Assessment of the effect of environmental factors on the antagonism of Bacillus amyloliquefaciens and Trichoderma harzianum to Colletotrichum acutatum. Advances in Microbiology 7(11): 729-742. DOI: 10.4236/aim.2017.711058.
Ferronato, N. and V. Torretta. 2019. Waste mismanagement in developing countries: A review of global issues. Int J Environ Res Public Health 16(6): 1060. DOI: 10.3390/ijerph16061060.
Ghayal, R.G., K.P. Vaidya, and P.B. Tapkeer. 2017. Effect of different organic manures and inorganic fertilizers on chemical properties of cucumber (Cucumis sativus L.) in lateritic soils of Konkan. International Journal of Chemical Studies 5(6): 1626-1630.
Gómez-Mendoza, D.P., M. Junqueira, L.H.F. do Vale, G.B. Domont, E.X.F. Filho, M.V. de Sousa, and C.A.O. Ricart. 2014. Secretomic survey of Trichoderma harzianum grown on plant biomass substrates. J. Proteome Res. 13(4): 1810–1822. DOI: 10.1021/pr400971e.
Guo, J., Y. Jia, H. Chen, L. Zhang, J. Yang, J. Zhang, X. Hu, X. Ye, Y. Li, and Y. Zhou. 2019. Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Scientific Reports 9(1248). DOI: 10.1038/s41598-018-37838-3.
Gupta, R. and S.K. Chakrabarty. 2013. Gibberellic acid in plant: Still a mystery unresolved. Plant Signal Behav. 8(9): e25504. DOI: 10.4161/psb.25504.
Hassan, M.K., J.A. McInroy, and J.W. Kloepper. 2019. The Interactions of rhizodeposits with plant growth-promoting rhizobacteria in the rhizosphere: A review. Agriculture 9(7): 142. DOI: 10.3390/agriculture9070142.
Illescas, M., A. Pedrero-Méndez, M. Pitorini-Bovolini, R. Hermosa, and E. Monte. 2021. Phytohormone production profiles in Trichoderma species and their relationship to wheat plant responses to water stress. Pathogens 10(8): 991. DOI: 10.3390/pathogens10080991.
Lee, E.-P., Y.S. Han, S.-I. Lee, K.-T. Cho, J.-H. Park, and Y.-H. You. 2017. Effect of nutrient and moisture on the growth and reproduction of Epilobium hirsutum L., an endangered plant. Journal of Ecology and Environment 41(35). DOI: 10.1186/s41610-017-0054-z.
Li, R.-X., F. Cai, G. Pang, Q.-R. Shen, R. Li, and W. Chen. 2015. solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS ONE 10(6): e0130081. DOI: 10.1371/journal.pone.0130081.
Loguercio, L.L., A.C. de Carvalho, G.R. Niella, J.T. De Souza, and A.W.V. Pomella. 2009. Selection of Trichoderma stromaticum isolates for efficient biological control of witches’ broom disease in cacao. Biological Control 51(1): 130-139. DOI: 10.1016/j.biocontrol.2009.06.005.
Lombardi, N., S. Vitale, D. Turrà , M. Reverberi, C. Fanelli, F. Vinale, R. Marra, M. Ruocco, A. Pascale, G. d’Errico, S.L. Woo, and M. Lorito. 2018. Root Exudates of stressed plants stimulate and attract Trichoderma soil fungi. Molecular Plant-Microbe Interaction 31(10): 982-994. DOI: 10.1094/MPMI-12-17-0310-R.
MartÃnez-Medina, A., M.D. Mar Alguacil, J.A. Pascual, and S.C.M. van Wees. 2014. Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J Chem Ecol. 40(7):804-15. DOI: 10.1007/s10886-014-0478-1.
Matin, M.A., M. N. Islam, N. Muhammad, and M.H. Rahman. 2019. Impact of Trichoderma enhanced composting technology in improving soil productivity. Asian Journal of Soil Science and Plant Nutrition 4(3): 1-19. DOI: 10.9734/AJSSPN/2019/v4i330046.
Naher, L., U.K. Yusuf, A. Ismail, and K. Hossain. 2014. Trichoderma spp.: A biocontrol agent for sustainable management of plant diseases. Pakistan Journal of Botany 46(4):1489-1493.
Naidoo, S. and A.O. Olaniran. 2014. Treated wastewater effluent as a source of microbial pollution of surface water resources. Int J Environ Res Public Health 11(1): 249–270. DOI: 10.3390/ijerph110100249.
Oktafiyanto, M.F., L. Soesanto, E. Mugiastuti, R.F. Rahayuniati, dan Tamad. 2020. Uji empat isolat Trichoderma harzianum pada pengomposan kotoran sapi dan ayam dan pengaruhnya terhadap pertumbuhan mentimun in planta. Agro Bali: Agricultural Journal 3(1): 52-66/ DOI: 10.37637/ab.v3i1.424.
Onilude, A.A., B.C. Adebayo-Tayo, A.O. Odeniyi, D. Banjo, and E.O. Garuba. 2012. Comparative mycelial and spore yield by Trichoderma viride in batch and fed-batch cultures. Ann Microbiol 63: 547–553. DOI: 10.1007/s13213-012-0502-z.
Pan, F., M. Nieswiadomy, and S. Qian. 2915. Application of a soil moisture diagnostic equation for estimating root-zone soil moisture in arid and semi-arid regions. Journal of Hydrology 524: 296-310. DOI: 10.1016/j.jhydrol.2015.02.044.
Pedrero-Méndez, A., H.C. Insuasti, T. Neagu, M. Illescas, M.B. Rubio, E. Monte, and R. Hermosa. 2021. Why is the correct selection of Trichoderma strains important? The case of wheat endophytic strains of T. harzianum and T. simmonsii. J Fungi (Basel) 7(12): 1087. DOI: 10.3390/jof7121087.
Poveda, J., R. Hermosa, E. Monte, and C. Nicolás. 2019. Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity. Scientific Reports 9: 11650. DOI: 10.1038/s41598-019-48269-z.
Poveda, J., P. Abril-Urias, and C. Escobar. 2020. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Front Microbiol. 11: 992. DOI: 10.3389/fmicb.2020.00992.
Puhup, C.S., N. Pandey, S. Dewedi, and G.K. Shrivastava. 2021. Plant height and root mass density of rice at different depth as influenced by tillage with nutrient management practices in rice-linseed cropping system. The Pharma Innovation Journal 10(7): 562-565.
Salama, E.-S., Kurade, M.B., Abou-Shanab, R.A.I., El-Dalatony, M.M., Yang, I.-S., Min, B., and Jeon, B.-H., 2017. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renewable and Sustainable Energy Reviews 79: 1189-1211. DOI: 10.1016/j.rser.2017.05.091.
Singh, A., M. Shahid, M. Srivastava, S. Pandey, A. Sharma, and V. Kumar. 2014. Optimal physical parameters for growth of Trichoderma species at varying pH, temperature and agitation. Virol. Mycol. 3:127. DOI: 10.4172/2161-0517.1000127.
Soesanto, L., E. Mugiastuti, R.F. Rahayuniati, dan R.S. Dewi. 2013. Uji kesesuaian empat isolat Trichoderma spp. dan daya hambat in vitro terhadap beberapa patogen tanaman. Jurnal HPT Tropika 13(2): 117–123.
Shrivastava, P. and R. Kumar. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci. 22(2): 123–131. DOI: 10.1016/j.sjbs.2014.12.001.
Srivastava, M., M. Shahid, S. Pandey, V. Kumar, A. Singh, S. Trivedi, Y.K. Srivastava, and Shivram. 2015. Trichoderma: A scientific approach against soil borne pathogens. African Journal of Microbiology Research 9(50): 2377-2384. DOI: 10.5897/AJMR2015.7788.
Thaha, A.R., U. Umrah, A. Asrul, A. Rahim, F. Fajra, and N. Nurzakia. 2020. The role of local isolates of Trichoderma sp. as a decomposer in the substrate of cacao pod rind (Theobroma cacao L.). AIMS Agriculture and Food 5(4): 825-834. DOI: 10.3934/agrfood.2020.4.825.
Trushina, N., M. Levin, P.K. Mukherjee, and B.A. Horwitz. 2013. PacC and pH-dependent transcriptome of the mycotrophic fungus Trichoderma virens. BMC Genomics 14:138. DOI: 10.1186/1471-2164-14-138.
Zhang, F., X. Meng, X. Yang, W. Ran, and Q. Shen. 2014. Quantification and role of organic acids in cucumber root exudates in Trichoderma harzianum T-E5 colonization. Plant Physiology and Biochemistry 83: 250-257. DOI: 10.1016/j.plaphy.2014.08.011.
Zin, N.A. and N.A. Badaluddin. 2020. Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences 65(2): 168-178. DOI: 10.1016/j.aoas.2020.09.003.















